Part Number Hot Search : 
1N4948G MC14106 SB2100 BZX55C18 C143Z MEC1322 U10A6CIC 04020
Product Description
Full Text Search
 

To Download CPV363MK Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  CPV363MK short circuit rated ultrafast igbt igbt sip module parameter typ. max. units r q jc (igbt) junction-to-case, each igbt, one igbt in conduction ------ 3.5 r q jc (diode) junction-to-case, each diode, one diode in conduction - ---- 5.5 c/w r q cs (module) case-to-sink, flat, greased surface 0.1 ----- wt weight of module 20 (0.7) ----- g (oz) thermal resistance features ? short circuit rated - 10s @ 125c, v ge = 15v ? fully isolated printed circuit board mount package ? switching-loss rating includes all "tail" losses ? hexfred tm soft ultrafast diodes ? optimized for high operating frequency (over 5khz) see fig. 1 for current vs. frequency curve product summary output current in a typical 20 khz motor drive 5.4 a rms per phase (1.7 kw total) with t c = 90c, t j = 125c, supply voltage 360vdc, power factor 0.8, modulation depth 80% (see figure 1) revision 2 3 6 71319 18 15 10 16 4 9 12 d1 d3 d5 d2 d4 d6 q1 q2 q3 q4 q5 q6 1 pd - 5.034 description the igbt technology is the key to international rectifier's advanced line of ims (insulated metal substrate) power modules. these modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power mosfet. this superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. this package is highly suited to power applications and where space is at a premium. these new short circuit rated devices are especially suited for motor control and other totem-pole applications requiring short circuit withstand capability. absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current, each igbt 11 i c @ t c = 100c continuous collector current, each igbt 6.0 i cm pulsed collector current ? 22 a i lm clamped inductive load current ? 22 i f @ t c = 100c diode continuous forward current 6.1 i fm diode maximum forward current 22 t sc short circuit withstand time 10 s v ge gate-to-emitter voltage 20 v v isol isolation voltage, any terminal to case, 1 minute 2500 v rms p d @ t c = 25c maximum power dissipation, each igbt 36 w p d @ t c = 100c maximum power dissipation, each igbt 14 t j operating junction and -40 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 5-7 lbf?in (0.55 - 0.8 n?m)
CPV363MK parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 ---- ---- v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage ---- 0.45 ---- v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ---- 2.0 3.0 i c = 6.0a v ge = 15v ---- 2.5 ---- v i c = 11a see fig. 2, 5 ---- 2.1 ---- i c = 6.0a, t j = 150c v ge(th) gate threshold voltage 3.0 ---- 5.5 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage ---- -13 ---- mv/c v ce = v ge , i c = 250a g fe forward transconductance ? 3.0 6.0 ---- s v ce = 100v, i c = 12a i ces zero gate voltage collector current ---- ---- 250 a v ge = 0v, v ce = 600v ---- ---- 2500 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ---- 1.4 1.7 v i c = 12a see fig. 13 ---- 1.3 1.6 i c = 12a, t j = 150c i ges gate-to-emitter leakage current ---- ---- 500 na v ge = 20v electrical characteristics @ t j = 25c (unless otherwise specified) ? repetitive rating; v ge =20v, pulse width limited by max. junction temperature. ( see fig. 20) notes: ? pulse width 5.0s, single shot. ? v cc =80%(v ces ), v ge =20v, l=10h, r g = 23 w , ( see fig. 19 ) ? pulse width 80s; duty factor 0.1%. parameter min. typ. max. units conditions q g total gate charge (turn-on) ---- 34 52 i c = 12a q ge gate - emitter charge (turn-on) ---- 7.8 12 nc v cc = 400v q gc gate - collector charge (turn-on) ---- 13 21 see fig. 8 t d(on) turn-on delay time ---- 64 ---- t j = 25c t r rise time ---- 24 ---- ns i c = 6.0a, v cc = 480v t d(off) turn-off delay time ---- 130 200 v ge = 15v, r g = 23 w t f fall time ---- 20 30 energy losses include "tail" and e on turn-on switching loss ---- 0.23 ---- diode reverse recovery. e off turn-off switching loss ---- 0.17 ---- mj see fig. 9, 10, 11, 18 e ts total switching loss ---- 0.40 0.60 t sc short circuit withstand time 10 ---- ---- s v cc = 360v, t j = 125c v ge = 15v, r g = 23 w , v cpk < 500v t d(on) turn-on delay time ---- 58 ---- t j = 150c, see fig. 9, 10, 11, 18 t r rise time ---- 24 ---- ns i c = 6.0a, v cc = 480v t d(off) turn-off delay time ---- 240 ---- v ge = 15v, r g = 23 w t f fall time ---- 140 ---- energy losses include "tail" and e ts total switching loss ---- 0.61 ---- mj diode reverse recovery. c ies input capacitance ---- 740 ---- v ge = 0v c oes output capacitance ---- 100 ---- pf v cc = 30v see fig. 7 c res reverse transfer capacitance ---- 9.3 ---- ? = 1.0mhz t rr diode reverse recovery time ---- 42 60 ns t j = 25c see fig. ---- 80 120 t j = 125c 14 i f = 12a i rr diode peak reverse recovery current ---- 3.5 6.0 a t j = 25c see fig. ---- 5.6 10 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ---- 80 180 nc t j = 25c see fig. ---- 220 600 t j = 125c 16 di/dt = 200a/ s di (rec)m /dtdiode peak rate of fall of recovery ---- 180 ---- a/s t j = 25c see fig. during t b ---- 120 ---- t j = 125c 17 switching characteristics @ t j = 25c (unless otherwise specified)
fig. 1 - rms current and output power, synthesized sine wave fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics CPV363MK 0 2 4 6 8 0.1 1 10 100 f, frequency (khz) load current (a) total output power (kw) 0 t = 90c t = 125c power factor = 0.8 modulation depth = 0.8 v = 60% of rated voltage c j cc 2. 5 1.9 1.2 0.6 0.1 1 10 100 0.1 1 10 ce c i , collector-to-emitter current (a) v , collector-to-emitter voltage (v) t = 150c t = 25c j j v = 15v 20s pulse width ge a 1 10 100 5 101520 c i , collector-to-emitter current (a) ge t = 25c t = 150c j j v = 100v 5s pulse width cc v , gate-to-emitter voltage (v) a
fig. 5 - collector-to-emitter voltage vs. case temperature fig. 4 - maximum collector current vs. case temperature CPV363MK fig. 6 - maximum igbt effective transient thermal impedance, junction-to-case 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 t , rectangular pulse duration (sec) 1 thjc d = 0.50 0.01 0.02 0.05 0.10 0.20 single pulse ( thermal response) thermal response (z ) p t 2 1 t dm notes: 1. duty factor d = t / t 2. peak t = p x z + t 12 j dm thjc c 1.0 1.5 2.0 2.5 3.0 3.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 c ce v , collector-to-emitter voltage (v) v = 15v 80s pulse width ge t , case temperature (c) a i = 12a i = 6.0a i = 3.0a c c c 0 3 6 9 12 25 50 75 100 125 150 maximum dc collector current (a) t , case temperature (c) c v = 15v ge a
CPV363MK fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. case temperature 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0 102030405060 g total switching losses (mj) r , gate resistance ( w ) a v = 480v v = 15v t = 25c i = 6.0a cc ge c c 0.1 1 10 -60 -40 -20 0 20 40 60 80 100 120 140 160 c t , case temperature (c) total switching losses (mj) a r = 23 w v = 15v v = 480v g ge cc i = 6.0a i = 3.0a i = 12a c c c 0 200 400 600 800 1000 1200 1400 1 10 100 ce c, capacitance (pf) v , collector-to-emitter voltage (v) a v = 0v, f = 1mhz c = c + c , c shorted c = c c = c + c ge ies ge gc ce res gc oes ce gc c ies c res c oes 0 4 8 12 16 20 0 10203040 ge v , gate-to-emitter voltage (v) g q , total gate charge (nc) a v = 400v i = 14a ce c
fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa fig. 13 - maximum forward voltage drop vs. instantaneous forward current CPV363MK 0.0 0.4 0.8 1.2 1.6 02468101214 c total switching losses (mj) i , collector-to-emitter current (a) a r = 23 w t = 150c v = 480v v = 15v g c cc ge 1 10 100 0.4 0.8 1.2 1.6 2.0 2.4 fm f instantaneous forward current - i (a) forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j 1 10 100 1 10 100 100 0 c ce i , collector-to-emitter current (a) safe operating area v = 20v t = 125c ge j v , collector-to-emitter voltage (v) a
CPV363MK fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt 0 200 400 600 100 1000 f di /dt - (a/s) rr q - (nc) i = 6.0a i = 12a i = 24a v = 200v t = 125c t = 25c r j j f f f 10 100 1000 10000 100 1000 f di /dt - (a/s) di(rec)m/dt - (a/s) i = 12a i = 24a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 0 40 80 120 160 100 1000 f di /dt - (a/s) t - (ns) rr i = 24a i = 12a i = 6.0a f f f v = 200v t = 125c t = 25c r j j 1 10 100 100 1000 f di /dt - (a/s) i - (a) irrm i = 6.0a i = 12a i = 24a f f f v = 200v t = 125c t = 25c r j j
t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+5s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = er ec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt same t ype device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr CPV363MK
vg gate signal device under tes t current d.u.t. vol tage i n d. u.t. current in d1 t0 t1 t2 fig. 18e - macro waveforms for test circuit of fig. 18a d.u.t. v * c 50v l 1000v 6000f 100v * driver same type as d.u.t.: vc = 80% of vce(max) * note: due to the 50v power supply, pulse width and inductor will increase to obtain rated id. fig. 19 - clamped inductive load test circuit r l = 480v 4 x i c @25c 0 - 480v fig. 20 - pulsed collector current test circuit CPV363MK dimensions in millimeters and (inches) ims-2 package outline (13 pins) 7.87 (.310) 5.46 (.215) 1.27 (.050) 6.10 (.240) 3.05 0.38 (.120 .015) 0.51 (.020) 0.38 (.015) 62.43 (2.458) 53.85 (2.120) 3.91 (.154) 2x 21.97 (.865) 3.94 (.155) 4.06 0.51 (.160 .020) 5.08 (.200) 6x 1.27 (.050) 13x 2.54 (.100) 6x 0.76 (.030) 13x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 notes: 1. tolerance unless otherwise specified 0.254 (.010). 2. controlling dimension: inch. 3. dimensions are shown in millimeter (inches). 4. terminal numbers are shown for reference only.


▲Up To Search▲   

 
Price & Availability of CPV363MK

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X